Sindbad~EG File Manager
//! This is the low-level interface for the raw blocks of an image.
//! See `exr::image` module for a high-level interface.
//!
//! Handle compressed and uncompressed pixel byte blocks. Includes compression and decompression,
//! and reading a complete image into blocks.
//!
//! Start with the `block::read(...)`
//! and `block::write(...)` functions.
pub mod writer;
pub mod reader;
pub mod lines;
pub mod samples;
pub mod chunk;
use std::io::{Read, Seek, Write};
use crate::error::{Result, UnitResult, Error, usize_to_i32};
use crate::meta::{Headers, MetaData, BlockDescription};
use crate::math::Vec2;
use crate::compression::ByteVec;
use crate::block::chunk::{CompressedBlock, CompressedTileBlock, CompressedScanLineBlock, Chunk, TileCoordinates};
use crate::meta::header::Header;
use crate::block::lines::{LineIndex, LineRef, LineSlice, LineRefMut};
use crate::meta::attribute::ChannelList;
/// Specifies where a block of pixel data should be placed in the actual image.
/// This is a globally unique identifier which
/// includes the layer, level index, and pixel location.
#[derive(Clone, Copy, Eq, Hash, PartialEq, Debug)]
pub struct BlockIndex {
/// Index of the layer.
pub layer: usize,
/// Index of the top left pixel from the block within the data window.
pub pixel_position: Vec2<usize>,
/// Number of pixels in this block, extending to the right and downwards.
/// Stays the same across all resolution levels.
pub pixel_size: Vec2<usize>,
/// Index of the mip or rip level in the image.
pub level: Vec2<usize>,
}
/// Contains a block of pixel data and where that data should be placed in the actual image.
#[derive(Clone, Eq, PartialEq, Debug)]
pub struct UncompressedBlock {
/// Location of the data inside the image.
pub index: BlockIndex,
/// Uncompressed pixel values of the whole block.
/// One or more scan lines may be stored together as a scan line block.
/// This byte vector contains all pixel rows, one after another.
/// For each line in the tile, for each channel, the row values are contiguous.
/// Stores all samples of the first channel, then all samples of the second channel, and so on.
pub data: ByteVec,
}
/// Immediately reads the meta data from the file.
/// Then, returns a reader that can be used to read all pixel blocks.
/// From the reader, you can pull each compressed chunk from the file.
/// Alternatively, you can create a decompressor, and pull the uncompressed data from it.
/// The reader is assumed to be buffered.
pub fn read<R: Read + Seek>(buffered_read: R, pedantic: bool) -> Result<self::reader::Reader<R>> {
self::reader::Reader::read_from_buffered(buffered_read, pedantic)
}
/// Immediately writes the meta data to the file.
/// Then, calls a closure with a writer that can be used to write all pixel blocks.
/// In the closure, you can push compressed chunks directly into the writer.
/// Alternatively, you can create a compressor, wrapping the writer, and push the uncompressed data to it.
/// The writer is assumed to be buffered.
pub fn write<W: Write + Seek>(
buffered_write: W, headers: Headers, compatibility_checks: bool,
write_chunks: impl FnOnce(MetaData, &mut self::writer::ChunkWriter<W>) -> UnitResult
) -> UnitResult {
self::writer::write_chunks_with(buffered_write, headers, compatibility_checks, write_chunks)
}
/// This iterator tells you the block indices of all blocks that must be in the image.
/// The order of the blocks depends on the `LineOrder` attribute
/// (unspecified line order is treated the same as increasing line order).
/// The blocks written to the file must be exactly in this order,
/// except for when the `LineOrder` is unspecified.
/// The index represents the block index, in increasing line order, within the header.
pub fn enumerate_ordered_header_block_indices(headers: &[Header]) -> impl '_ + Iterator<Item=(usize, BlockIndex)> {
headers.iter().enumerate().flat_map(|(layer_index, header)|{
header.enumerate_ordered_blocks().map(move |(index_in_header, tile)|{
let data_indices = header.get_absolute_block_pixel_coordinates(tile.location).expect("tile coordinate bug");
let block = BlockIndex {
layer: layer_index,
level: tile.location.level_index,
pixel_position: data_indices.position.to_usize("data indices start").expect("data index bug"),
pixel_size: data_indices.size,
};
(index_in_header, block)
})
})
}
impl UncompressedBlock {
/// Decompress the possibly compressed chunk and returns an `UncompressedBlock`.
// for uncompressed data, the ByteVec in the chunk is moved all the way
#[inline]
#[must_use]
pub fn decompress_chunk(chunk: Chunk, meta_data: &MetaData, pedantic: bool) -> Result<Self> {
let header: &Header = meta_data.headers.get(chunk.layer_index)
.ok_or(Error::invalid("chunk layer index"))?;
let tile_data_indices = header.get_block_data_indices(&chunk.compressed_block)?;
let absolute_indices = header.get_absolute_block_pixel_coordinates(tile_data_indices)?;
absolute_indices.validate(Some(header.layer_size))?;
match chunk.compressed_block {
CompressedBlock::Tile(CompressedTileBlock { compressed_pixels, .. }) |
CompressedBlock::ScanLine(CompressedScanLineBlock { compressed_pixels, .. }) => {
Ok(UncompressedBlock {
data: header.compression.decompress_image_section(header, compressed_pixels, absolute_indices, pedantic)?,
index: BlockIndex {
layer: chunk.layer_index,
pixel_position: absolute_indices.position.to_usize("data indices start")?,
level: tile_data_indices.level_index,
pixel_size: absolute_indices.size,
}
})
},
_ => return Err(Error::unsupported("deep data not supported yet"))
}
}
/// Consume this block by compressing it, returning a `Chunk`.
// for uncompressed data, the ByteVec in the chunk is moved all the way
#[inline]
#[must_use]
pub fn compress_to_chunk(self, headers: &[Header]) -> Result<Chunk> {
let UncompressedBlock { data, index } = self;
let header: &Header = headers.get(index.layer)
.expect("block layer index bug");
let expected_byte_size = header.channels.bytes_per_pixel * self.index.pixel_size.area(); // TODO sampling??
if expected_byte_size != data.len() {
panic!("get_line byte size should be {} but was {}", expected_byte_size, data.len());
}
let tile_coordinates = TileCoordinates {
// FIXME this calculation should not be made here but elsewhere instead (in meta::header?)
tile_index: index.pixel_position / header.max_block_pixel_size(), // TODO sampling??
level_index: index.level,
};
let absolute_indices = header.get_absolute_block_pixel_coordinates(tile_coordinates)?;
absolute_indices.validate(Some(header.layer_size))?;
if !header.compression.may_loose_data() { debug_assert_eq!(
&header.compression.decompress_image_section(
header,
header.compression.compress_image_section(header, data.clone(), absolute_indices)?,
absolute_indices,
true
).unwrap(),
&data,
"compression method not round trippin'"
); }
let compressed_data = header.compression.compress_image_section(header, data, absolute_indices)?;
Ok(Chunk {
layer_index: index.layer,
compressed_block : match header.blocks {
BlockDescription::ScanLines => CompressedBlock::ScanLine(CompressedScanLineBlock {
compressed_pixels: compressed_data,
// FIXME this calculation should not be made here but elsewhere instead (in meta::header?)
y_coordinate: usize_to_i32(index.pixel_position.y()) + header.own_attributes.layer_position.y(), // TODO sampling??
}),
BlockDescription::Tiles(_) => CompressedBlock::Tile(CompressedTileBlock {
compressed_pixels: compressed_data,
coordinates: tile_coordinates,
}),
}
})
}
/// Iterate all the lines in this block.
/// Each line contains the all samples for one of the channels.
pub fn lines(&self, channels: &ChannelList) -> impl Iterator<Item=LineRef<'_>> {
LineIndex::lines_in_block(self.index, channels)
.map(move |(bytes, line)| LineSlice { location: line, value: &self.data[bytes] })
}
/* TODO pub fn lines_mut<'s>(&'s mut self, header: &Header) -> impl 's + Iterator<Item=LineRefMut<'s>> {
LineIndex::lines_in_block(self.index, &header.channels)
.map(move |(bytes, line)| LineSlice { location: line, value: &mut self.data[bytes] })
}*/
/*// TODO make iterator
/// Call a closure for each line of samples in this uncompressed block.
pub fn for_lines(
&self, header: &Header,
mut accept_line: impl FnMut(LineRef<'_>) -> UnitResult
) -> UnitResult {
for (bytes, line) in LineIndex::lines_in_block(self.index, &header.channels) {
let line_ref = LineSlice { location: line, value: &self.data[bytes] };
accept_line(line_ref)?;
}
Ok(())
}*/
// TODO from iterator??
/// Create an uncompressed block byte vector by requesting one line of samples after another.
pub fn collect_block_data_from_lines(
channels: &ChannelList, block_index: BlockIndex,
mut extract_line: impl FnMut(LineRefMut<'_>)
) -> Vec<u8>
{
let byte_count = block_index.pixel_size.area() * channels.bytes_per_pixel;
let mut block_bytes = vec![0_u8; byte_count];
for (byte_range, line_index) in LineIndex::lines_in_block(block_index, channels) {
extract_line(LineRefMut { // TODO subsampling
value: &mut block_bytes[byte_range],
location: line_index,
});
}
block_bytes
}
/// Create an uncompressed block by requesting one line of samples after another.
pub fn from_lines(
channels: &ChannelList, block_index: BlockIndex,
extract_line: impl FnMut(LineRefMut<'_>)
) -> Self {
Self {
index: block_index,
data: Self::collect_block_data_from_lines(channels, block_index, extract_line)
}
}
}
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists