Sindbad~EG File Manager
//! Crop away unwanted pixels. Includes automatic detection of bounding rectangle.
//! Currently does not support deep data and resolution levels.
use crate::meta::attribute::{IntegerBounds, LevelMode, ChannelList};
use crate::math::{Vec2, RoundingMode};
use crate::image::{Layer, FlatSamples, SpecificChannels, AnyChannels, FlatSamplesPixel, AnyChannel};
use crate::image::write::channels::{GetPixel, WritableChannels, ChannelsWriter};
use crate::meta::header::{LayerAttributes, Header};
use crate::block::BlockIndex;
/// Something that has a two-dimensional rectangular shape
pub trait GetBounds {
/// The bounding rectangle of this pixel grid.
fn bounds(&self) -> IntegerBounds;
}
/// Inspect the pixels in this image to determine where to crop some away
pub trait InspectSample: GetBounds {
/// The type of pixel in this pixel grid.
type Sample;
/// Index is not in world coordinates, but within the data window.
/// Position `(0,0)` always represents the top left pixel.
fn inspect_sample(&self, local_index: Vec2<usize>) -> Self::Sample;
}
/// Crop some pixels ways when specifying a smaller rectangle
pub trait Crop: Sized {
/// The type of this image after cropping (probably the same as before)
type Cropped;
/// Crop the image to exclude unwanted pixels.
/// Panics for invalid (larger than previously) bounds.
/// The bounds are specified in absolute coordinates.
/// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers.
/// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint.
fn crop(self, bounds: IntegerBounds) -> Self::Cropped;
/// Reduce your image to a smaller part, usually to save memory.
/// Crop if bounds are specified, return the original if no bounds are specified.
/// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers.
/// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint.
fn try_crop(self, bounds: Option<IntegerBounds>) -> CropResult<Self::Cropped, Self> {
match bounds {
Some(bounds) => CropResult::Cropped(self.crop(bounds)),
None => CropResult::Empty { original: self },
}
}
}
/// Cropping an image fails if the image is fully transparent.
/// Use [`or_crop_to_1x1_if_empty`] or [`or_none_if_empty`] to obtain a normal image again.
#[must_use]
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum CropResult<Cropped, Old> {
/// The image contained some pixels and has been cropped or left untouched
Cropped (Cropped),
/// All pixels in the image would be discarded, removing the whole image
Empty {
/// The fully discarded image which caused the cropping to fail
original: Old
}
}
/// Crop away unwanted pixels from the border if they match the specified rule.
pub trait CropWhere<Sample>: Sized {
/// The type of the cropped image (probably the same as the original image).
type Cropped;
/// Crop away unwanted pixels from the border if they match the specified rule.
/// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers.
/// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint.
fn crop_where(self, discard_if: impl Fn(Sample) -> bool) -> CropResult<Self::Cropped, Self>;
/// Crop away unwanted pixels from the border if they match the specified color.
/// If you want discard based on a rule, use `crop_where` with a closure instead.
/// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers.
/// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint.
fn crop_where_eq(self, discard_color: impl Into<Sample>) -> CropResult<Self::Cropped, Self> where Sample: PartialEq;
/// Convert this data to cropped data without discarding any pixels.
fn crop_nowhere(self) -> Self::Cropped;
}
impl<Channels> Crop for Layer<Channels> {
type Cropped = Layer<CroppedChannels<Channels>>;
fn crop(self, bounds: IntegerBounds) -> Self::Cropped {
CroppedChannels::crop_layer(bounds, self)
}
}
impl<T> CropWhere<T::Sample> for T where T: Crop + InspectSample {
type Cropped = <Self as Crop>::Cropped;
fn crop_where(self, discard_if: impl Fn(T::Sample) -> bool) -> CropResult<Self::Cropped, Self> {
let smaller_bounds = {
let keep_if = |position| !discard_if(self.inspect_sample(position));
try_find_smaller_bounds(self.bounds(), keep_if)
};
self.try_crop(smaller_bounds)
}
fn crop_where_eq(self, discard_color: impl Into<T::Sample>) -> CropResult<Self::Cropped, Self> where T::Sample: PartialEq {
let discard_color: T::Sample = discard_color.into();
self.crop_where(|sample| sample == discard_color)
}
fn crop_nowhere(self) -> Self::Cropped {
let current_bounds = self.bounds();
self.crop(current_bounds)
}
}
/// A smaller window into an existing pixel storage
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct CroppedChannels<Channels> {
/// The uncropped pixel storage
pub full_channels: Channels,
/// The uncropped pixel storage bounds
pub full_bounds: IntegerBounds,
/// The cropped pixel storage bounds
pub cropped_bounds: IntegerBounds,
}
impl<Channels> CroppedChannels<Channels> {
/// Wrap a layer in a cropped view with adjusted bounds, but without reallocating your pixels
pub fn crop_layer(new_bounds: IntegerBounds, layer: Layer<Channels>) -> Layer<CroppedChannels<Channels>> {
Layer {
channel_data: CroppedChannels {
cropped_bounds: new_bounds,
full_bounds: layer.absolute_bounds(),
full_channels: layer.channel_data,
},
size: new_bounds.size,
attributes: LayerAttributes {
layer_position: new_bounds.position,
.. layer.attributes
},
encoding: layer.encoding
}
}
}
// TODO make cropped view readable if you only need a specific section of the image?
// make cropped view writable:
impl<'slf, Channels:'slf> WritableChannels<'slf> for CroppedChannels<Channels> where Channels: WritableChannels<'slf> {
fn infer_channel_list(&self) -> ChannelList {
self.full_channels.infer_channel_list() // no need for adjustments, as the layer content already reflects the changes
}
fn infer_level_modes(&self) -> (LevelMode, RoundingMode) {
self.full_channels.infer_level_modes()
}
type Writer = CroppedWriter<Channels::Writer>;
fn create_writer(&'slf self, header: &Header) -> Self::Writer {
let offset = (self.cropped_bounds.position - self.full_bounds.position)
.to_usize("invalid cropping bounds for cropped view").unwrap();
CroppedWriter { channels: self.full_channels.create_writer(header), offset }
}
}
/// A writer for the cropped view layer
#[derive(Debug, Clone, PartialEq)]
pub struct CroppedWriter<ChannelsWriter> {
channels: ChannelsWriter,
offset: Vec2<usize>
}
impl<'c, Channels> ChannelsWriter for CroppedWriter<Channels> where Channels: ChannelsWriter {
fn extract_uncompressed_block(&self, header: &Header, block: BlockIndex) -> Vec<u8> {
let block = BlockIndex {
pixel_position: block.pixel_position + self.offset,
.. block
};
self.channels.extract_uncompressed_block(header, block)
}
}
impl<Samples, Channels> InspectSample for Layer<SpecificChannels<Samples, Channels>> where Samples: GetPixel {
type Sample = Samples::Pixel;
fn inspect_sample(&self, local_index: Vec2<usize>) -> Samples::Pixel {
self.channel_data.pixels.get_pixel(local_index)
}
}
impl InspectSample for Layer<AnyChannels<FlatSamples>> {
type Sample = FlatSamplesPixel;
fn inspect_sample(&self, local_index: Vec2<usize>) -> FlatSamplesPixel {
self.sample_vec_at(local_index)
}
}
// ALGORITHM IDEA: for arbitrary channels, find the most desired channel,
// and process that first, keeping the processed bounds as starting point for the other layers
/// Realize a cropped view of the original data,
/// by actually removing the unwanted original pixels,
/// reducing the memory consumption.
/// Currently not supported for `SpecificChannels`.
pub trait ApplyCroppedView {
/// The simpler type after cropping is realized
type Reallocated;
/// Make the cropping real by reallocating the underlying storage,
/// with the goal of reducing total memory usage.
/// Currently not supported for `SpecificChannels`.
fn reallocate_cropped(self) -> Self::Reallocated;
}
impl ApplyCroppedView for Layer<CroppedChannels<AnyChannels<FlatSamples>>> {
type Reallocated = Layer<AnyChannels<FlatSamples>>;
fn reallocate_cropped(self) -> Self::Reallocated {
let cropped_absolute_bounds = self.channel_data.cropped_bounds;
let cropped_relative_bounds = cropped_absolute_bounds.with_origin(-self.channel_data.full_bounds.position);
assert!(self.absolute_bounds().contains(cropped_absolute_bounds), "bounds not valid for layer dimensions");
assert!(cropped_relative_bounds.size.area() > 0, "the cropped image would be empty");
Layer {
channel_data: if cropped_relative_bounds.size == self.channel_data.full_bounds.size {
assert_eq!(cropped_absolute_bounds.position, self.channel_data.full_bounds.position, "crop bounds size equals, but position does not");
// the cropping would not remove any pixels
self.channel_data.full_channels
}
else {
let start_x = cropped_relative_bounds.position.x() as usize; // safe, because just checked above
let start_y = cropped_relative_bounds.position.y() as usize; // safe, because just checked above
let x_range = start_x .. start_x + cropped_relative_bounds.size.width();
let old_width = self.channel_data.full_bounds.size.width();
let new_height = cropped_relative_bounds.size.height();
let channels = self.channel_data.full_channels.list.into_iter().map(|channel: AnyChannel<FlatSamples>| {
fn crop_samples<T:Copy>(samples: Vec<T>, old_width: usize, new_height: usize, x_range: std::ops::Range<usize>, y_start: usize) -> Vec<T> {
let filtered_lines = samples.chunks_exact(old_width).skip(y_start).take(new_height);
let trimmed_lines = filtered_lines.map(|line| &line[x_range.clone()]);
trimmed_lines.flatten().map(|x|*x).collect() // TODO does this use memcpy?
}
let samples = match channel.sample_data {
FlatSamples::F16(samples) => FlatSamples::F16(crop_samples(
samples, old_width, new_height, x_range.clone(), start_y
)),
FlatSamples::F32(samples) => FlatSamples::F32(crop_samples(
samples, old_width, new_height, x_range.clone(), start_y
)),
FlatSamples::U32(samples) => FlatSamples::U32(crop_samples(
samples, old_width, new_height, x_range.clone(), start_y
)),
};
AnyChannel { sample_data: samples, ..channel }
}).collect();
AnyChannels { list: channels }
},
attributes: self.attributes,
encoding: self.encoding,
size: self.size,
}
}
}
/// Return the smallest bounding rectangle including all pixels that satisfy the predicate.
/// Worst case: Fully transparent image, visits each pixel once.
/// Best case: Fully opaque image, visits two pixels.
/// Returns `None` if the image is fully transparent.
/// Returns `[(0,0), size]` if the image is fully opaque.
/// Designed to be cache-friendly linear search. Optimized for row-major image vectors.
pub fn try_find_smaller_bounds(current_bounds: IntegerBounds, pixel_at: impl Fn(Vec2<usize>) -> bool) -> Option<IntegerBounds> {
assert_ne!(current_bounds.size.area(), 0, "cannot find smaller bounds of an image with zero width or height");
let Vec2(width, height) = current_bounds.size;
// scans top to bottom (left to right)
let first_top_left_pixel = (0 .. height)
.flat_map(|y| (0 .. width).map(move |x| Vec2(x,y)))
.find(|&position| pixel_at(position))?; // return none if no pixel should be kept
// scans bottom to top (right to left)
let first_bottom_right_pixel = (first_top_left_pixel.y() + 1 .. height) // excluding the top line
.flat_map(|y| (0 .. width).map(move |x| Vec2(x, y))) // x search cannot start at first_top.x, because this must catch all bottom pixels
.rev().find(|&position| pixel_at(position))
.unwrap_or(first_top_left_pixel); // did not find any at bottom, but we know top has some pixel
// now we know exactly how much we can throw away top and bottom,
// but we don't know exactly about left or right
let top = first_top_left_pixel.y();
let bottom = first_bottom_right_pixel.y();
// we only now some arbitrary left and right bounds which we need to refine.
// because the actual image contents might be wider than the corner points.
// we know that we do not need to look in the center between min x and max x,
// as these must be included in any case.
let mut min_left_x = first_top_left_pixel.x().min(first_bottom_right_pixel.x());
let mut max_right_x = first_bottom_right_pixel.x().max(first_top_left_pixel.x());
// requires for loop, because bounds change while searching
for y in top ..= bottom {
// escape the loop if there is nothing left to crop
if min_left_x == 0 && max_right_x == width - 1 { break; }
// search from right image edge towards image center, until known max x, for existing pixels,
// possibly including some pixels that would have been cropped otherwise
if max_right_x != width - 1 {
max_right_x = (max_right_x + 1 .. width).rev() // excluding current max
.find(|&x| pixel_at(Vec2(x, y)))
.unwrap_or(max_right_x);
}
// search from left image edge towards image center, until known min x, for existing pixels,
// possibly including some pixels that would have been cropped otherwise
if min_left_x != 0 {
min_left_x = (0 .. min_left_x) // excluding current min
.find(|&x| pixel_at(Vec2(x, y)))
.unwrap_or(min_left_x);
}
}
// TODO add 1px margin to avoid interpolation issues?
let local_start = Vec2(min_left_x, top);
let local_end = Vec2(max_right_x + 1, bottom + 1);
Some(IntegerBounds::new(
current_bounds.position + local_start.to_i32(),
local_end - local_start
))
}
impl<S> GetBounds for Layer<S> {
fn bounds(&self) -> IntegerBounds {
self.absolute_bounds()
}
}
impl<Cropped, Original> CropResult<Cropped, Original> {
/// If the image was fully empty, return `None`, otherwise return `Some(cropped_image)`.
pub fn or_none_if_empty(self) -> Option<Cropped> {
match self {
CropResult::Cropped (cropped) => Some(cropped),
CropResult::Empty { .. } => None,
}
}
/// If the image was fully empty, crop to one single pixel of all the transparent pixels instead,
/// leaving the layer intact while reducing memory usage.
pub fn or_crop_to_1x1_if_empty(self) -> Cropped where Original: Crop<Cropped=Cropped> + GetBounds {
match self {
CropResult::Cropped (cropped) => cropped,
CropResult::Empty { original } => {
let bounds = original.bounds();
if bounds.size == Vec2(0,0) { panic!("layer has width and height of zero") }
original.crop(IntegerBounds::new(bounds.position, Vec2(1,1)))
},
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn find_bounds() {
fn find_bounds(offset: Vec2<i32>, lines: &Vec<Vec<i32>>) -> IntegerBounds {
if let Some(first_line) = lines.first() {
assert!(lines.iter().all(|line| line.len() == first_line.len()), "invalid test input");
IntegerBounds::new(offset, (first_line.len(), lines.len()))
}
else {
IntegerBounds::new(offset, (0,0))
}
}
fn assert_found_smaller_bounds(offset: Vec2<i32>, uncropped_lines: Vec<Vec<i32>>, expected_cropped_lines: Vec<Vec<i32>>) {
let old_bounds = find_bounds(offset, &uncropped_lines);
let found_bounds = try_find_smaller_bounds(
old_bounds,
|position| uncropped_lines[position.y()][position.x()] != 0
).unwrap();
let found_bounds = found_bounds.with_origin(-offset); // make indices local
let cropped_lines: Vec<Vec<i32>> =
uncropped_lines[found_bounds.position.y() as usize .. found_bounds.end().y() as usize]
.iter().map(|uncropped_line|{
uncropped_line[found_bounds.position.x() as usize .. found_bounds.end().x() as usize].to_vec()
}).collect();
assert_eq!(cropped_lines, expected_cropped_lines);
}
assert_found_smaller_bounds(
Vec2(-3,-3),
vec![
vec![ 2, 3, 4 ],
vec![ 2, 3, 4 ],
],
vec![
vec![ 2, 3, 4 ],
vec![ 2, 3, 4 ],
]
);
assert_found_smaller_bounds(
Vec2(-3,-3),
vec![
vec![ 2 ],
],
vec![
vec![ 2 ],
]
);
assert_found_smaller_bounds(
Vec2(-3,-3),
vec![
vec![ 0 ],
vec![ 2 ],
vec![ 0 ],
vec![ 0 ],
],
vec![
vec![ 2 ],
]
);
assert_found_smaller_bounds(
Vec2(-3,-3),
vec![
vec![ 0, 0, 0, 3, 0 ],
],
vec![
vec![ 3 ],
]
);
assert_found_smaller_bounds(
Vec2(3,3),
vec![
vec![ 0, 1, 1, 2, 1, 0 ],
vec![ 0, 1, 3, 1, 1, 0 ],
vec![ 0, 1, 1, 1, 1, 0 ],
],
vec![
vec![ 1, 1, 2, 1 ],
vec![ 1, 3, 1, 1 ],
vec![ 1, 1, 1, 1 ],
]
);
assert_found_smaller_bounds(
Vec2(3,3),
vec![
vec![ 0, 0, 0, 0 ],
vec![ 1, 1, 2, 1 ],
vec![ 1, 3, 1, 1 ],
vec![ 1, 1, 1, 1 ],
vec![ 0, 0, 0, 0 ],
],
vec![
vec![ 1, 1, 2, 1 ],
vec![ 1, 3, 1, 1 ],
vec![ 1, 1, 1, 1 ],
]
);
assert_found_smaller_bounds(
Vec2(3,3),
vec![
vec![ 0, 1, 1, 2, 1, 0 ],
vec![ 0, 0, 3, 1, 0, 0 ],
vec![ 0, 1, 1, 1, 1, 0 ],
],
vec![
vec![ 1, 1, 2, 1 ],
vec![ 0, 3, 1, 0 ],
vec![ 1, 1, 1, 1 ],
]
);
assert_found_smaller_bounds(
Vec2(3,3),
vec![
vec![ 0, 0, 1, 2, 0, 0 ],
vec![ 0, 1, 3, 1, 1, 0 ],
vec![ 0, 0, 1, 1, 0, 0 ],
],
vec![
vec![ 0, 1, 2, 0 ],
vec![ 1, 3, 1, 1 ],
vec![ 0, 1, 1, 0 ],
]
);
assert_found_smaller_bounds(
Vec2(1,3),
vec![
vec![ 1, 0, 0, 0, ],
vec![ 0, 0, 0, 0, ],
vec![ 0, 0, 0, 0, ],
],
vec![
vec![ 1 ],
]
);
assert_found_smaller_bounds(
Vec2(1,3),
vec![
vec![ 0, 0, 0, 0, ],
vec![ 0, 1, 0, 0, ],
vec![ 0, 0, 0, 0, ],
],
vec![
vec![ 1 ],
]
);
assert_found_smaller_bounds(
Vec2(-1,-3),
vec![
vec![ 0, 0, 0, 0, ],
vec![ 0, 0, 0, 1, ],
vec![ 0, 0, 0, 0, ],
],
vec![
vec![ 1 ],
]
);
assert_found_smaller_bounds(
Vec2(-1,-3),
vec![
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 1, 1, 0, 0 ],
vec![ 0, 0, 1, 1, 1, 0, 0 ],
vec![ 0, 0, 1, 1, 1, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
],
vec![
vec![ 1, 1, 1 ],
vec![ 1, 1, 1 ],
vec![ 1, 1, 1 ],
]
);
assert_found_smaller_bounds(
Vec2(1000,-300),
vec![
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 1, 1, 0, 0 ],
vec![ 0, 1, 1, 1, 1, 1, 0 ],
vec![ 0, 0, 1, 1, 1, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
],
vec![
vec![ 0, 1, 1, 1, 0 ],
vec![ 1, 1, 1, 1, 1 ],
vec![ 0, 1, 1, 1, 0 ],
]
);
assert_found_smaller_bounds(
Vec2(-10,-300),
vec![
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 0, 1, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 0, 1, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
],
vec![
vec![ 1, 0, 1 ],
vec![ 0, 0, 0 ],
vec![ 1, 0, 1 ],
]
);
assert_found_smaller_bounds(
Vec2(-10,-300),
vec![
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 0, 1, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
],
vec![
vec![ 1, 0, 1 ],
]
);
assert_found_smaller_bounds(
Vec2(-10,-300),
vec![
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 1, 0, 0, 0 ],
vec![ 0, 0, 0, 2, 0, 0, 0 ],
vec![ 0, 0, 3, 3, 3, 0, 0 ],
vec![ 0, 0, 0, 4, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
],
vec![
vec![ 0, 1, 0 ],
vec![ 0, 2, 0 ],
vec![ 3, 3, 3 ],
vec![ 0, 4, 0 ],
]
);
assert_found_smaller_bounds(
Vec2(-10,-300),
vec![
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 1, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
],
vec![
vec![ 0, 0, 1 ],
vec![ 0, 0, 0 ],
vec![ 0, 0, 0 ],
vec![ 1, 0, 0 ],
]
);
assert_found_smaller_bounds(
Vec2(-10,-300),
vec![
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 1, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
],
vec![
vec![ 1, 0, 0, 0 ],
vec![ 0, 0, 0, 0 ],
vec![ 0, 0, 0, 1 ],
]
);
assert_found_smaller_bounds(
Vec2(-10,-300),
vec![
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
],
vec![
vec![ 1 ],
vec![ 0 ],
vec![ 0 ],
vec![ 1 ],
]
);
assert_found_smaller_bounds(
Vec2(-1,-3),
vec![
vec![ 0, 0, 1, 0, ],
vec![ 0, 0, 0, 1, ],
vec![ 0, 0, 0, 0, ],
],
vec![
vec![ 1, 0, ],
vec![ 0, 1, ],
]
);
assert_found_smaller_bounds(
Vec2(-1,-3),
vec![
vec![ 1, 0, 0, 0, ],
vec![ 0, 1, 0, 0, ],
vec![ 0, 0, 0, 0, ],
vec![ 0, 0, 0, 0, ],
],
vec![
vec![ 1, 0, ],
vec![ 0, 1, ],
]
);
}
#[test]
fn find_no_bounds() {
let pixels = vec![
vec![ 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0 ],
];
let bounds = try_find_smaller_bounds(
IntegerBounds::new((0,0), (4,3)),
|position| pixels[position.y()][position.x()] != 0
);
assert_eq!(bounds, None)
}
}
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists