Sindbad~EG File Manager
//! Contains all meta data attributes.
//! Each layer can have any number of [`Attribute`]s, including custom attributes.
use smallvec::SmallVec;
/// Contains one of all possible attributes.
/// Includes a variant for custom attributes.
#[derive(Debug, Clone, PartialEq)]
pub enum AttributeValue {
/// Channel meta data.
ChannelList(ChannelList),
/// Color space definition.
Chromaticities(Chromaticities),
/// Compression method of this layer.
Compression(Compression),
/// This image is an environment map.
EnvironmentMap(EnvironmentMap),
/// Film roll information.
KeyCode(KeyCode),
/// Order of the bocks in the file.
LineOrder(LineOrder),
/// A 3x3 matrix of floats.
Matrix3x3(Matrix3x3),
/// A 4x4 matrix of floats.
Matrix4x4(Matrix4x4),
/// 8-bit rgba Preview of the image.
Preview(Preview),
/// An integer dividend and divisor.
Rational(Rational),
/// Deep or flat and tiled or scan line.
BlockType(BlockType),
/// List of texts.
TextVector(Vec<Text>),
/// How to tile up the image.
TileDescription(TileDescription),
/// Timepoint and more.
TimeCode(TimeCode),
/// A string of byte-chars.
Text(Text),
/// 64-bit float
F64(f64),
/// 32-bit float
F32(f32),
/// 32-bit signed integer
I32(i32),
/// 2D integer rectangle.
IntegerBounds(IntegerBounds),
/// 2D float rectangle.
FloatRect(FloatRect),
/// 2D integer vector.
IntVec2(Vec2<i32>),
/// 2D float vector.
FloatVec2(Vec2<f32>),
/// 3D integer vector.
IntVec3((i32, i32, i32)),
/// 3D float vector.
FloatVec3((f32, f32, f32)),
/// A custom attribute.
/// Contains the type name of this value.
Custom {
/// The name of the type this attribute is an instance of.
kind: Text,
/// The value, stored in little-endian byte order, of the value.
/// Use the `exr::io::Data` trait to extract binary values from this vector.
bytes: Vec<u8>
},
}
/// A byte array with each byte being a char.
/// This is not UTF an must be constructed from a standard string.
// TODO is this ascii? use a rust ascii crate?
#[derive(Clone, PartialEq, Ord, PartialOrd, Default)] // hash implemented manually
pub struct Text {
bytes: TextBytes,
}
/// Contains time information for this frame within a sequence.
/// Also defined methods to compile this information into a
/// `TV60`, `TV50` or `Film24` bit sequence, packed into `u32`.
///
/// Satisfies the [SMPTE standard 12M-1999](https://en.wikipedia.org/wiki/SMPTE_timecode).
/// For more in-depth information, see [philrees.co.uk/timecode](http://www.philrees.co.uk/articles/timecode.htm).
#[derive(Copy, Debug, Clone, Eq, PartialEq, Hash, Default)]
pub struct TimeCode {
/// Hours 0 - 23 are valid.
pub hours: u8,
/// Minutes 0 - 59 are valid.
pub minutes: u8,
/// Seconds 0 - 59 are valid.
pub seconds: u8,
/// Frame Indices 0 - 29 are valid.
pub frame: u8,
/// Whether this is a drop frame.
pub drop_frame: bool,
/// Whether this is a color frame.
pub color_frame: bool,
/// Field Phase.
pub field_phase: bool,
/// Flags for `TimeCode.binary_groups`.
pub binary_group_flags: [bool; 3],
/// The user-defined control codes.
/// Every entry in this array can use at most 3 bits.
/// This results in a maximum value of 15, including 0, for each `u8`.
pub binary_groups: [u8; 8]
}
/// layer type, specifies block type and deepness.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub enum BlockType {
/// Corresponds to the string value `scanlineimage`.
ScanLine,
/// Corresponds to the string value `tiledimage`.
Tile,
/// Corresponds to the string value `deepscanline`.
DeepScanLine,
/// Corresponds to the string value `deeptile`.
DeepTile,
}
/// The string literals used to represent a `BlockType` in a file.
pub mod block_type_strings {
/// Type attribute text value of flat scan lines
pub const SCAN_LINE: &'static [u8] = b"scanlineimage";
/// Type attribute text value of flat tiles
pub const TILE: &'static [u8] = b"tiledimage";
/// Type attribute text value of deep scan lines
pub const DEEP_SCAN_LINE: &'static [u8] = b"deepscanline";
/// Type attribute text value of deep tiles
pub const DEEP_TILE: &'static [u8] = b"deeptile";
}
pub use crate::compression::Compression;
/// The integer rectangle describing where an layer is placed on the infinite 2D global space.
pub type DataWindow = IntegerBounds;
/// The integer rectangle limiting which part of the infinite 2D global space should be displayed.
pub type DisplayWindow = IntegerBounds;
/// An integer dividend and divisor, together forming a ratio.
pub type Rational = (i32, u32);
/// A float matrix with four rows and four columns.
pub type Matrix4x4 = [f32; 4*4];
/// A float matrix with three rows and three columns.
pub type Matrix3x3 = [f32; 3*3];
/// A rectangular section anywhere in 2D integer space.
/// Valid from minimum coordinate (including) `-1,073,741,822`
/// to maximum coordinate (including) `1,073,741,822`, the value of (`i32::MAX/2 -1`).
#[derive(Clone, Copy, Debug, Eq, PartialEq, Default, Hash)]
pub struct IntegerBounds {
/// The top left corner of this rectangle.
/// The `Box2I32` includes this pixel if the size is not zero.
pub position: Vec2<i32>,
/// How many pixels to include in this `Box2I32`.
/// Extends to the right and downwards.
/// Does not include the actual boundary, just like `Vec::len()`.
pub size: Vec2<usize>,
}
/// A rectangular section anywhere in 2D float space.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct FloatRect {
/// The top left corner location of the rectangle (inclusive)
pub min: Vec2<f32>,
/// The bottom right corner location of the rectangle (inclusive)
pub max: Vec2<f32>
}
/// A List of channels. Channels must be sorted alphabetically.
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub struct ChannelList {
/// The channels in this list.
pub list: SmallVec<[ChannelDescription; 5]>,
/// The number of bytes that one pixel in this image needs.
// FIXME this needs to account for subsampling anywhere?
pub bytes_per_pixel: usize, // FIXME only makes sense for flat images!
/// The sample type of all channels, if all channels have the same type.
pub uniform_sample_type: Option<SampleType>,
}
/// A single channel in an layer.
/// Does not contain the actual pixel data,
/// but instead merely describes it.
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub struct ChannelDescription {
/// One of "R", "G", or "B" most of the time.
pub name: Text,
/// U32, F16 or F32.
pub sample_type: SampleType,
/// This attribute only tells lossy compression methods
/// whether this value should be quantized exponentially or linearly.
///
/// Should be `false` for red, green, or blue channels.
/// Should be `true` for hue, chroma, saturation, or alpha channels.
pub quantize_linearly: bool,
/// How many of the samples are skipped compared to the other channels in this layer.
///
/// Can be used for chroma subsampling for manual lossy data compression.
/// Values other than 1 are allowed only in flat, scan-line based images.
/// If an image is deep or tiled, x and y sampling rates for all of its channels must be 1.
pub sampling: Vec2<usize>,
}
/// The type of samples in this channel.
#[derive(Clone, Debug, Eq, PartialEq, Copy, Hash)]
pub enum SampleType {
/// This channel contains 32-bit unsigned int values.
U32,
/// This channel contains 16-bit float values.
F16,
/// This channel contains 32-bit float values.
F32,
}
/// The color space of the pixels.
///
/// If a file doesn't have a chromaticities attribute, display software
/// should assume that the file's primaries and the white point match `Rec. ITU-R BT.709-3`.
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct Chromaticities {
/// "Red" location on the CIE XY chromaticity diagram.
pub red: Vec2<f32>,
/// "Green" location on the CIE XY chromaticity diagram.
pub green: Vec2<f32>,
/// "Blue" location on the CIE XY chromaticity diagram.
pub blue: Vec2<f32>,
/// "White" location on the CIE XY chromaticity diagram.
pub white: Vec2<f32>
}
/// If this attribute is present, it describes
/// how this texture should be projected onto an environment.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub enum EnvironmentMap {
/// This image is an environment map projected like a world map.
LatitudeLongitude,
/// This image contains the six sides of a cube.
Cube,
}
/// Uniquely identifies a motion picture film frame.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub struct KeyCode {
/// Identifies a film manufacturer.
pub film_manufacturer_code: i32,
/// Identifies a film type.
pub film_type: i32,
/// Specifies the film roll prefix.
pub film_roll_prefix: i32,
/// Specifies the film count.
pub count: i32,
/// Specifies the perforation offset.
pub perforation_offset: i32,
/// Specifies the perforation count of each single frame.
pub perforations_per_frame: i32,
/// Specifies the perforation count of each single film.
pub perforations_per_count: i32,
}
/// In what order the `Block`s of pixel data appear in a file.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub enum LineOrder {
/// The blocks in the file are ordered in descending rows from left to right.
/// When compressing in parallel, this option requires potentially large amounts of memory.
/// In that case, use `LineOrder::Unspecified` for best performance.
Increasing,
/// The blocks in the file are ordered in ascending rows from right to left.
/// When compressing in parallel, this option requires potentially large amounts of memory.
/// In that case, use `LineOrder::Unspecified` for best performance.
Decreasing,
/// The blocks are not ordered in a specific way inside the file.
/// In multi-core file writing, this option offers the best performance.
Unspecified,
}
/// A small `rgba` image of `i8` values that approximates the real exr image.
// TODO is this linear?
#[derive(Clone, Eq, PartialEq)]
pub struct Preview {
/// The dimensions of the preview image.
pub size: Vec2<usize>,
/// An array with a length of 4 × width × height.
/// The pixels are stored in `LineOrder::Increasing`.
/// Each pixel consists of the four `u8` values red, green, blue, alpha.
pub pixel_data: Vec<i8>,
}
/// Describes how the layer is divided into tiles.
/// Specifies the size of each tile in the image
/// and whether this image contains multiple resolution levels.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub struct TileDescription {
/// The size of each tile.
/// Stays the same number of pixels across all levels.
pub tile_size: Vec2<usize>,
/// Whether to also store smaller versions of the image.
pub level_mode: LevelMode,
/// Whether to round up or down when calculating Mip/Rip levels.
pub rounding_mode: RoundingMode,
}
/// Whether to also store increasingly smaller versions of the original image.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub enum LevelMode {
/// Only a single level.
Singular,
/// Levels with a similar aspect ratio.
MipMap,
/// Levels with all possible aspect ratios.
RipMap,
}
/// The raw bytes that make up a string in an exr file.
/// Each `u8` is a single char.
// will mostly be "R", "G", "B" or "deepscanlineimage"
pub type TextBytes = SmallVec<[u8; 24]>;
/// A byte slice, interpreted as text
pub type TextSlice = [u8];
use crate::io::*;
use crate::meta::{sequence_end};
use crate::error::*;
use crate::math::{RoundingMode, Vec2};
use half::f16;
use std::convert::{TryFrom};
use std::borrow::Borrow;
use std::hash::{Hash, Hasher};
use bit_field::BitField;
fn invalid_type() -> Error {
Error::invalid("attribute type mismatch")
}
impl Text {
/// Create a `Text` from an `str` reference.
/// Returns `None` if this string contains unsupported chars.
pub fn new_or_none(string: impl AsRef<str>) -> Option<Self> {
let vec : Option<TextBytes> = string.as_ref().chars()
.map(|character| u8::try_from(character as u64).ok())
.collect();
vec.map(Self::from_bytes_unchecked)
}
/// Create a `Text` from an `str` reference.
/// Panics if this string contains unsupported chars.
pub fn new_or_panic(string: impl AsRef<str>) -> Self {
Self::new_or_none(string).expect("exr::Text contains unsupported characters")
}
/// Create a `Text` from a slice of bytes,
/// without checking any of the bytes.
pub fn from_slice_unchecked(text: &TextSlice) -> Self {
Self::from_bytes_unchecked(SmallVec::from_slice(text))
}
/// Create a `Text` from the specified bytes object,
/// without checking any of the bytes.
pub fn from_bytes_unchecked(bytes: TextBytes) -> Self {
Text { bytes }
}
/// The internal ASCII bytes this text is made of.
pub fn as_slice(&self) -> &TextSlice {
self.bytes.as_slice()
}
/// Check whether this string is valid, adjusting `long_names` if required.
/// If `long_names` is not provided, text length will be entirely unchecked.
pub fn validate(&self, null_terminated: bool, long_names: Option<&mut bool>) -> UnitResult {
Self::validate_bytes(self.as_slice(), null_terminated, long_names)
}
/// Check whether some bytes are valid, adjusting `long_names` if required.
/// If `long_names` is not provided, text length will be entirely unchecked.
pub fn validate_bytes(text: &TextSlice, null_terminated: bool, long_names: Option<&mut bool>) -> UnitResult {
if null_terminated && text.is_empty() {
return Err(Error::invalid("text must not be empty"));
}
if let Some(long) = long_names {
if text.len() >= 256 { return Err(Error::invalid("text must not be longer than 255")); }
if text.len() >= 32 { *long = true; }
}
Ok(())
}
/// The byte count this string would occupy if it were encoded as a null-terminated string.
pub fn null_terminated_byte_size(&self) -> usize {
self.bytes.len() + sequence_end::byte_size()
}
/// The byte count this string would occupy if it were encoded as a size-prefixed string.
pub fn i32_sized_byte_size(&self) -> usize {
self.bytes.len() + i32::BYTE_SIZE
}
/// Write the length of a string and then the contents with that length.
pub fn write_i32_sized<W: Write>(&self, write: &mut W) -> UnitResult {
debug_assert!(self.validate( false, None).is_ok(), "text size bug");
i32::write(usize_to_i32(self.bytes.len()), write)?;
Self::write_unsized_bytes(self.bytes.as_slice(), write)
}
/// Without validation, write this instance to the byte stream.
fn write_unsized_bytes<W: Write>(bytes: &[u8], write: &mut W) -> UnitResult {
u8::write_slice(write, bytes)?;
Ok(())
}
/// Read the length of a string and then the contents with that length.
pub fn read_i32_sized<R: Read>(read: &mut R, max_size: usize) -> Result<Self> {
let size = i32_to_usize(i32::read(read)?, "vector size")?;
Ok(Text::from_bytes_unchecked(SmallVec::from_vec(u8::read_vec(read, size, 1024, Some(max_size), "text attribute length")?)))
}
/// Read the contents with that length.
pub fn read_sized<R: Read>(read: &mut R, size: usize) -> Result<Self> {
const SMALL_SIZE: usize = 24;
// for small strings, read into small vec without heap allocation
if size <= SMALL_SIZE {
let mut buffer = [0_u8; SMALL_SIZE];
let data = &mut buffer[..size];
read.read_exact(data)?;
Ok(Text::from_bytes_unchecked(SmallVec::from_slice(data)))
}
// for large strings, read a dynamic vec of arbitrary size
else {
Ok(Text::from_bytes_unchecked(SmallVec::from_vec(u8::read_vec(read, size, 1024, None, "text attribute length")?)))
}
}
/// Write the string contents and a null-terminator.
pub fn write_null_terminated<W: Write>(&self, write: &mut W) -> UnitResult {
Self::write_null_terminated_bytes(self.as_slice(), write)
}
/// Write the string contents and a null-terminator.
fn write_null_terminated_bytes<W: Write>(bytes: &[u8], write: &mut W) -> UnitResult {
debug_assert!(!bytes.is_empty(), "text is empty bug"); // required to avoid mixup with "sequece_end"
Text::write_unsized_bytes(bytes, write)?;
sequence_end::write(write)?;
Ok(())
}
/// Read a string until the null-terminator is found. Then skips the null-terminator.
pub fn read_null_terminated<R: Read>(read: &mut R, max_len: usize) -> Result<Self> {
let mut bytes = smallvec![ u8::read(read)? ]; // null-terminated strings are always at least 1 byte
loop {
match u8::read(read)? {
0 => break,
non_terminator => bytes.push(non_terminator),
}
if bytes.len() > max_len {
return Err(Error::invalid("text too long"))
}
}
Ok(Text { bytes })
}
/// Allows any text length since it is only used for attribute values,
/// but not attribute names, attribute type names, or channel names.
fn read_vec_of_i32_sized(
read: &mut PeekRead<impl Read>,
total_byte_size: usize
) -> Result<Vec<Text>>
{
let mut result = Vec::with_capacity(2);
// length of the text-vector can be inferred from attribute size
let mut processed_bytes = 0;
while processed_bytes < total_byte_size {
let text = Text::read_i32_sized(read, total_byte_size)?;
processed_bytes += ::std::mem::size_of::<i32>(); // size i32 of the text
processed_bytes += text.bytes.len();
result.push(text);
}
// the expected byte size did not match the actual text byte size
if processed_bytes != total_byte_size {
return Err(Error::invalid("text array byte size"))
}
Ok(result)
}
/// Allows any text length since it is only used for attribute values,
/// but not attribute names, attribute type names, or channel names.
fn write_vec_of_i32_sized_texts<W: Write>(write: &mut W, texts: &[Text]) -> UnitResult {
// length of the text-vector can be inferred from attribute size
for text in texts {
text.write_i32_sized(write)?;
}
Ok(())
}
/// The underlying bytes that represent this text.
pub fn bytes(&self) -> &[u8] {
self.bytes.as_slice()
}
/// Iterate over the individual chars in this text, similar to `String::chars()`.
/// Does not do any heap-allocation but borrows from this instance instead.
pub fn chars(&self) -> impl '_ + Iterator<Item = char> {
self.bytes.iter().map(|&byte| byte as char)
}
/// Compare this `exr::Text` with a plain `&str`.
pub fn eq(&self, string: &str) -> bool {
string.chars().eq(self.chars())
}
/// Compare this `exr::Text` with a plain `&str` ignoring capitalization.
pub fn eq_case_insensitive(&self, string: &str) -> bool {
// this is technically not working for a "turkish i", but those cannot be encoded in exr files anyways
let self_chars = self.chars().map(|char| char.to_ascii_lowercase());
let string_chars = string.chars().flat_map(|ch| ch.to_lowercase());
string_chars.eq(self_chars)
}
}
impl PartialEq<str> for Text {
fn eq(&self, other: &str) -> bool {
self.eq(other)
}
}
impl PartialEq<Text> for str {
fn eq(&self, other: &Text) -> bool {
other.eq(self)
}
}
impl Eq for Text {}
impl Borrow<TextSlice> for Text {
fn borrow(&self) -> &TextSlice {
self.as_slice()
}
}
// forwarding implementation. guarantees `text.borrow().hash() == text.hash()` (required for Borrow)
impl Hash for Text {
fn hash<H: Hasher>(&self, state: &mut H) {
self.bytes.hash(state)
}
}
impl Into<String> for Text {
fn into(self) -> String {
self.to_string()
}
}
impl<'s> From<&'s str> for Text {
/// Panics if the string contains an unsupported character
fn from(str: &'s str) -> Self {
Self::new_or_panic(str)
}
}
/* TODO (currently conflicts with From<&str>)
impl<'s> TryFrom<&'s str> for Text {
type Error = String;
fn try_from(value: &'s str) -> std::result::Result<Self, Self::Error> {
Text::new_or_none(value)
.ok_or_else(|| format!(
"exr::Text does not support all characters in the string `{}`",
value
))
}
}*/
impl ::std::fmt::Debug for Text {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
write!(f, "exr::Text(\"{}\")", self)
}
}
// automatically implements to_string for us
impl ::std::fmt::Display for Text {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
use std::fmt::Write;
for &byte in self.bytes.iter() {
f.write_char(byte as char)?;
}
Ok(())
}
}
impl ChannelList {
/// Does not validate channel order.
pub fn new(channels: SmallVec<[ChannelDescription; 5]>) -> Self {
let uniform_sample_type = {
if let Some(first) = channels.first() {
let has_uniform_types = channels.iter().skip(1)
.all(|chan| chan.sample_type == first.sample_type);
if has_uniform_types { Some(first.sample_type) } else { None }
}
else { None }
};
ChannelList {
bytes_per_pixel: channels.iter().map(|channel| channel.sample_type.bytes_per_sample()).sum(),
list: channels, uniform_sample_type,
}
}
/// Iterate over the channels, and adds to each channel the byte offset of the channels sample type.
/// Assumes the internal channel list is properly sorted.
pub fn channels_with_byte_offset(&self) -> impl Iterator<Item=(usize, &ChannelDescription)> {
self.list.iter().scan(0, |byte_position, channel|{
let previous_position = *byte_position;
*byte_position += channel.sample_type.bytes_per_sample();
Some((previous_position, channel))
})
}
/// Return the index of the channel with the exact name, case sensitive, or none.
/// Potentially uses less than linear time.
pub fn find_index_of_channel(&self, exact_name: &Text) -> Option<usize> {
self.list.binary_search_by_key(&exact_name.bytes(), |chan| chan.name.bytes()).ok()
}
// TODO use this in compression methods
/*pub fn pixel_section_indices(&self, bounds: IntegerBounds) -> impl '_ + Iterator<Item=(&Channel, usize, usize)> {
(bounds.position.y() .. bounds.end().y()).flat_map(|y| {
self.list
.filter(|channel| mod_p(y, usize_to_i32(channel.sampling.1)) == 0)
.flat_map(|channel|{
(bounds.position.x() .. bounds.end().x())
.filter(|x| mod_p(*x, usize_to_i32(channel.sampling.0)) == 0)
.map(|x| (channel, x, y))
})
})
}*/
}
impl BlockType {
/// The corresponding attribute type name literal
const TYPE_NAME: &'static [u8] = type_names::TEXT;
/// Return a `BlockType` object from the specified attribute text value.
pub fn parse(text: Text) -> Result<Self> {
match text.as_slice() {
block_type_strings::SCAN_LINE => Ok(BlockType::ScanLine),
block_type_strings::TILE => Ok(BlockType::Tile),
block_type_strings::DEEP_SCAN_LINE => Ok(BlockType::DeepScanLine),
block_type_strings::DEEP_TILE => Ok(BlockType::DeepTile),
_ => Err(Error::invalid("block type attribute value")),
}
}
/// Without validation, write this instance to the byte stream.
pub fn write(&self, write: &mut impl Write) -> UnitResult {
u8::write_slice(write, self.to_text_bytes())?;
Ok(())
}
/// Returns the raw attribute text value this type is represented by in a file.
pub fn to_text_bytes(&self) -> &[u8] {
match self {
BlockType::ScanLine => block_type_strings::SCAN_LINE,
BlockType::Tile => block_type_strings::TILE,
BlockType::DeepScanLine => block_type_strings::DEEP_SCAN_LINE,
BlockType::DeepTile => block_type_strings::DEEP_TILE,
}
}
/// Number of bytes this would consume in an exr file.
pub fn byte_size(&self) -> usize {
self.to_text_bytes().len()
}
}
impl IntegerBounds {
/// Create a box with no size located at (0,0).
pub fn zero() -> Self {
Self::from_dimensions(Vec2(0, 0))
}
/// Create a box with a size starting at zero.
pub fn from_dimensions(size: impl Into<Vec2<usize>>) -> Self {
Self::new(Vec2(0,0), size)
}
/// Create a box with a size and an origin point.
pub fn new(start: impl Into<Vec2<i32>>, size: impl Into<Vec2<usize>>) -> Self {
Self { position: start.into(), size: size.into() }
}
/// Returns the top-right coordinate of the rectangle.
/// The row and column described by this vector are not included in the rectangle,
/// just like `Vec::len()`.
pub fn end(self) -> Vec2<i32> {
self.position + self.size.to_i32() // larger than max int32 is panic
}
/// Returns the maximum coordinate that a value in this rectangle may have.
pub fn max(self) -> Vec2<i32> {
self.end() - Vec2(1,1)
}
/// Validate this instance.
pub fn validate(&self, max_size: Option<Vec2<usize>>) -> UnitResult {
if let Some(max_size) = max_size {
if self.size.width() > max_size.width() || self.size.height() > max_size.height() {
return Err(Error::invalid("window attribute dimension value"));
}
}
let min_i64 = Vec2(self.position.x() as i64, self.position.y() as i64);
let max_i64 = Vec2(
self.position.x() as i64 + self.size.width() as i64,
self.position.y() as i64 + self.size.height() as i64,
);
Self::validate_min_max_u64(min_i64, max_i64)
}
fn validate_min_max_u64(min: Vec2<i64>, max: Vec2<i64>) -> UnitResult {
let max_box_size_as_i64 = (i32::MAX / 2) as i64; // as defined in the original c++ library
if max.x() >= max_box_size_as_i64
|| max.y() >= max_box_size_as_i64
|| min.x() <= -max_box_size_as_i64
|| min.y() <= -max_box_size_as_i64
{
return Err(Error::invalid("window size exceeding integer maximum"));
}
Ok(())
}
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize {
4 * i32::BYTE_SIZE
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
let Vec2(x_min, y_min) = self.position;
let Vec2(x_max, y_max) = self.max();
x_min.write(write)?;
y_min.write(write)?;
x_max.write(write)?;
y_max.write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
let x_min = i32::read(read)?;
let y_min = i32::read(read)?;
let x_max = i32::read(read)?;
let y_max = i32::read(read)?;
let min = Vec2(x_min.min(x_max), y_min.min(y_max));
let max = Vec2(x_min.max(x_max), y_min.max(y_max));
// prevent addition overflow
Self::validate_min_max_u64(
Vec2(min.x() as i64, min.y() as i64),
Vec2(max.x() as i64, max.y() as i64),
)?;
// add one to max because the max inclusive, but the size is not
let size = Vec2(max.x() + 1 - min.x(), max.y() + 1 - min.y());
let size = size.to_usize("box coordinates")?;
Ok(IntegerBounds { position: min, size })
}
/// Create a new rectangle which is offset by the specified origin.
pub fn with_origin(self, origin: Vec2<i32>) -> Self { // TODO rename to "move" or "translate"?
IntegerBounds { position: self.position + origin, .. self }
}
/// Returns whether the specified rectangle is equal to or inside this rectangle.
pub fn contains(self, subset: Self) -> bool {
subset.position.x() >= self.position.x()
&& subset.position.y() >= self.position.y()
&& subset.end().x() <= self.end().x()
&& subset.end().y() <= self.end().y()
}
}
impl FloatRect {
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize {
4 * f32::BYTE_SIZE
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
self.min.x().write(write)?;
self.min.y().write(write)?;
self.max.x().write(write)?;
self.max.y().write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
let x_min = f32::read(read)?;
let y_min = f32::read(read)?;
let x_max = f32::read(read)?;
let y_max = f32::read(read)?;
Ok(FloatRect {
min: Vec2(x_min, y_min),
max: Vec2(x_max, y_max)
})
}
}
impl SampleType {
/// How many bytes a single sample takes up.
pub fn bytes_per_sample(&self) -> usize {
match self {
SampleType::F16 => f16::BYTE_SIZE,
SampleType::F32 => f32::BYTE_SIZE,
SampleType::U32 => u32::BYTE_SIZE,
}
}
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize {
i32::BYTE_SIZE
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
match *self {
SampleType::U32 => 0_i32,
SampleType::F16 => 1_i32,
SampleType::F32 => 2_i32,
}.write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
// there's definitely going to be more than 255 different pixel types in the future
Ok(match i32::read(read)? {
0 => SampleType::U32,
1 => SampleType::F16,
2 => SampleType::F32,
_ => return Err(Error::invalid("pixel type attribute value")),
})
}
}
impl ChannelDescription {
/// Choose whether to compress samples linearly or not, based on the channel name.
/// Luminance-based channels will be compressed differently than linear data such as alpha.
pub fn guess_quantization_linearity(name: &Text) -> bool {
!(
name.eq_case_insensitive("R") || name.eq_case_insensitive("G") ||
name.eq_case_insensitive("B") || name.eq_case_insensitive("L") ||
name.eq_case_insensitive("Y") || name.eq_case_insensitive("X") ||
name.eq_case_insensitive("Z")
)
}
/// Create a new channel with the specified properties and a sampling rate of (1,1).
/// Automatically chooses the linearity for compression based on the channel name.
pub fn named(name: impl Into<Text>, sample_type: SampleType) -> Self {
let name = name.into();
let linearity = Self::guess_quantization_linearity(&name);
Self::new(name, sample_type, linearity)
}
/*pub fn from_name<T: Into<Sample> + Default>(name: impl Into<Text>) -> Self {
Self::named(name, T::default().into().sample_type())
}*/
/// Create a new channel with the specified properties and a sampling rate of (1,1).
pub fn new(name: impl Into<Text>, sample_type: SampleType, quantize_linearly: bool) -> Self {
Self { name: name.into(), sample_type, quantize_linearly, sampling: Vec2(1, 1) }
}
/// The count of pixels this channel contains, respecting subsampling.
// FIXME this must be used everywhere
pub fn subsampled_pixels(&self, dimensions: Vec2<usize>) -> usize {
self.subsampled_resolution(dimensions).area()
}
/// The resolution pf this channel, respecting subsampling.
pub fn subsampled_resolution(&self, dimensions: Vec2<usize>) -> Vec2<usize> {
dimensions / self.sampling
}
/// Number of bytes this would consume in an exr file.
pub fn byte_size(&self) -> usize {
self.name.null_terminated_byte_size()
+ SampleType::byte_size()
+ 1 // is_linear
+ 3 // reserved bytes
+ 2 * u32::BYTE_SIZE // sampling x, y
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
Text::write_null_terminated(&self.name, write)?;
self.sample_type.write(write)?;
match self.quantize_linearly {
false => 0_u8,
true => 1_u8,
}.write(write)?;
i8::write_slice(write, &[0_i8, 0_i8, 0_i8])?;
i32::write(usize_to_i32(self.sampling.x()), write)?;
i32::write(usize_to_i32(self.sampling.y()), write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
let name = Text::read_null_terminated(read, 256)?;
let sample_type = SampleType::read(read)?;
let is_linear = match u8::read(read)? {
1 => true,
0 => false,
_ => return Err(Error::invalid("channel linearity attribute value")),
};
let mut reserved = [0_i8; 3];
i8::read_slice(read, &mut reserved)?;
let x_sampling = i32_to_usize(i32::read(read)?, "x channel sampling")?;
let y_sampling = i32_to_usize(i32::read(read)?, "y channel sampling")?;
Ok(ChannelDescription {
name, sample_type,
quantize_linearly: is_linear,
sampling: Vec2(x_sampling, y_sampling),
})
}
/// Validate this instance.
pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult {
self.name.validate(true, None)?; // TODO spec says this does not affect `requirements.long_names` but is that true?
if self.sampling.x() == 0 || self.sampling.y() == 0 {
return Err(Error::invalid("zero sampling factor"));
}
if strict && !allow_sampling && self.sampling != Vec2(1,1) {
return Err(Error::invalid("subsampling is only allowed in flat scan line images"));
}
if data_window.position.x() % self.sampling.x() as i32 != 0 || data_window.position.y() % self.sampling.y() as i32 != 0 {
return Err(Error::invalid("channel sampling factor not dividing data window position"));
}
if data_window.size.x() % self.sampling.x() != 0 || data_window.size.y() % self.sampling.y() != 0 {
return Err(Error::invalid("channel sampling factor not dividing data window size"));
}
if self.sampling != Vec2(1,1) {
// TODO this must only be implemented in the crate::image module and child modules,
// should not be too difficult
return Err(Error::unsupported("channel subsampling not supported yet"));
}
Ok(())
}
}
impl ChannelList {
/// Number of bytes this would consume in an exr file.
pub fn byte_size(&self) -> usize {
self.list.iter().map(ChannelDescription::byte_size).sum::<usize>() + sequence_end::byte_size()
}
/// Without validation, write this instance to the byte stream.
/// Assumes channels are sorted alphabetically and all values are validated.
pub fn write(&self, write: &mut impl Write) -> UnitResult {
for channel in &self.list {
channel.write(write)?;
}
sequence_end::write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read(read: &mut PeekRead<impl Read>) -> Result<Self> {
let mut channels = SmallVec::new();
while !sequence_end::has_come(read)? {
channels.push(ChannelDescription::read(read)?);
}
Ok(ChannelList::new(channels))
}
/// Check if channels are valid and sorted.
pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult {
let mut iter = self.list.iter().map(|chan| chan.validate(allow_sampling, data_window, strict).map(|_| &chan.name));
let mut previous = iter.next().ok_or(Error::invalid("at least one channel is required"))??;
for result in iter {
let value = result?;
if strict && previous == value { return Err(Error::invalid("channel names are not unique")); }
else if previous > value { return Err(Error::invalid("channel names are not sorted alphabetically")); }
else { previous = value; }
}
Ok(())
}
}
fn u8_to_decimal32(binary: u8) -> u32 {
let units = binary as u32 % 10;
let tens = (binary as u32 / 10) % 10;
units | (tens << 4)
}
// assumes value fits into u8
fn u8_from_decimal32(coded: u32) -> u8 {
((coded & 0x0f) + 10 * ((coded >> 4) & 0x0f)) as u8
}
// https://github.com/AcademySoftwareFoundation/openexr/blob/master/src/lib/OpenEXR/ImfTimeCode.cpp
impl TimeCode {
/// Number of bytes this would consume in an exr file.
pub const BYTE_SIZE: usize = 2 * u32::BYTE_SIZE;
/// Returns an error if this time code is considered invalid.
pub fn validate(&self, strict: bool) -> UnitResult {
if strict {
if self.frame > 29 { Err(Error::invalid("time code frame larger than 29")) }
else if self.seconds > 59 { Err(Error::invalid("time code seconds larger than 59")) }
else if self.minutes > 59 { Err(Error::invalid("time code minutes larger than 59")) }
else if self.hours > 23 { Err(Error::invalid("time code hours larger than 23")) }
else if self.binary_groups.iter().any(|&group| group > 15) {
Err(Error::invalid("time code binary group value too large for 3 bits"))
}
else { Ok(()) }
}
else { Ok(()) }
}
/// Pack the SMPTE time code into a u32 value, according to TV60 packing.
/// This is the encoding which is used within a binary exr file.
pub fn pack_time_as_tv60_u32(&self) -> Result<u32> {
// validate strictly to prevent set_bit panic! below
self.validate(true)?;
Ok(*0_u32
.set_bits(0..6, u8_to_decimal32(self.frame))
.set_bit(6, self.drop_frame)
.set_bit(7, self.color_frame)
.set_bits(8..15, u8_to_decimal32(self.seconds))
.set_bit(15, self.field_phase)
.set_bits(16..23, u8_to_decimal32(self.minutes))
.set_bit(23, self.binary_group_flags[0])
.set_bits(24..30, u8_to_decimal32(self.hours))
.set_bit(30, self.binary_group_flags[1])
.set_bit(31, self.binary_group_flags[2])
)
}
/// Unpack a time code from one TV60 encoded u32 value and the encoded user data.
/// This is the encoding which is used within a binary exr file.
pub fn from_tv60_time(tv60_time: u32, user_data: u32) -> Self {
Self {
frame: u8_from_decimal32(tv60_time.get_bits(0..6)), // cast cannot fail, as these are less than 8 bits
drop_frame: tv60_time.get_bit(6),
color_frame: tv60_time.get_bit(7),
seconds: u8_from_decimal32(tv60_time.get_bits(8..15)), // cast cannot fail, as these are less than 8 bits
field_phase: tv60_time.get_bit(15),
minutes: u8_from_decimal32(tv60_time.get_bits(16..23)), // cast cannot fail, as these are less than 8 bits
hours: u8_from_decimal32(tv60_time.get_bits(24..30)), // cast cannot fail, as these are less than 8 bits
binary_group_flags: [
tv60_time.get_bit(23),
tv60_time.get_bit(30),
tv60_time.get_bit(31),
],
binary_groups: Self::unpack_user_data_from_u32(user_data)
}
}
/// Pack the SMPTE time code into a u32 value, according to TV50 packing.
/// This encoding does not support the `drop_frame` flag, it will be lost.
pub fn pack_time_as_tv50_u32(&self) -> Result<u32> {
Ok(*self.pack_time_as_tv60_u32()?
// swap some fields by replacing some bits in the packed u32
.set_bit(6, false)
.set_bit(15, self.binary_group_flags[0])
.set_bit(30, self.binary_group_flags[1])
.set_bit(23, self.binary_group_flags[2])
.set_bit(31, self.field_phase)
)
}
/// Unpack a time code from one TV50 encoded u32 value and the encoded user data.
/// This encoding does not support the `drop_frame` flag, it will always be false.
pub fn from_tv50_time(tv50_time: u32, user_data: u32) -> Self {
Self {
drop_frame: false, // do not use bit [6]
// swap some fields:
field_phase: tv50_time.get_bit(31),
binary_group_flags: [
tv50_time.get_bit(15),
tv50_time.get_bit(30),
tv50_time.get_bit(23),
],
.. Self::from_tv60_time(tv50_time, user_data)
}
}
/// Pack the SMPTE time code into a u32 value, according to FILM24 packing.
/// This encoding does not support the `drop_frame` and `color_frame` flags, they will be lost.
pub fn pack_time_as_film24_u32(&self) -> Result<u32> {
Ok(*self.pack_time_as_tv60_u32()?
.set_bit(6, false)
.set_bit(7, false)
)
}
/// Unpack a time code from one TV60 encoded u32 value and the encoded user data.
/// This encoding does not support the `drop_frame` and `color_frame` flags, they will always be `false`.
pub fn from_film24_time(film24_time: u32, user_data: u32) -> Self {
Self {
drop_frame: false, // bit [6]
color_frame: false, // bit [7]
.. Self::from_tv60_time(film24_time, user_data)
}
}
// in rust, group index starts at zero, not at one.
fn user_data_bit_indices(group_index: usize) -> std::ops::Range<usize> {
let min_bit = 4 * group_index;
min_bit .. min_bit + 4 // +4, not +3, as `Range` is exclusive
}
/// Pack the user data `u8` array into one u32.
/// User data values are clamped to the valid range (maximum value is 4).
pub fn pack_user_data_as_u32(&self) -> u32 {
let packed = self.binary_groups.iter().enumerate().fold(0_u32, |mut packed, (group_index, group_value)|
*packed.set_bits(Self::user_data_bit_indices(group_index), *group_value.min(&15) as u32)
);
debug_assert_eq!(Self::unpack_user_data_from_u32(packed), self.binary_groups, "round trip user data encoding");
packed
}
// Unpack the encoded u32 user data to an array of bytes, each byte having a value from 0 to 4.
fn unpack_user_data_from_u32(user_data: u32) -> [u8; 8] {
(0..8).map(|group_index| user_data.get_bits(Self::user_data_bit_indices(group_index)) as u8)
.collect::<SmallVec<[u8;8]>>().into_inner().expect("array index bug")
}
/// Write this time code to the byte stream, encoded as TV60 integers.
/// Returns an `Error::Invalid` if the fields are out of the allowed range.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
self.pack_time_as_tv60_u32()?.write(write)?; // will validate
self.pack_user_data_as_u32().write(write)?;
Ok(())
}
/// Read the time code, without validating, extracting from TV60 integers.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
let time_and_flags = u32::read(read)?;
let user_data = u32::read(read)?;
Ok(Self::from_tv60_time(time_and_flags, user_data))
}
}
impl Chromaticities {
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize {
8 * f32::BYTE_SIZE
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
self.red.x().write(write)?;
self.red.y().write(write)?;
self.green.x().write(write)?;
self.green.y().write(write)?;
self.blue.x().write(write)?;
self.blue.y().write(write)?;
self.white.x().write(write)?;
self.white.y().write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
Ok(Chromaticities {
red: Vec2(f32::read(read)?, f32::read(read)?),
green: Vec2(f32::read(read)?, f32::read(read)?),
blue: Vec2(f32::read(read)?, f32::read(read)?),
white: Vec2(f32::read(read)?, f32::read(read)?),
})
}
}
impl Compression {
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize { u8::BYTE_SIZE }
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(self, write: &mut W) -> UnitResult {
use self::Compression::*;
match self {
Uncompressed => 0_u8,
RLE => 1_u8,
ZIP1 => 2_u8,
ZIP16 => 3_u8,
PIZ => 4_u8,
PXR24 => 5_u8,
B44 => 6_u8,
B44A => 7_u8,
DWAA(_) => 8_u8,
DWAB(_) => 9_u8,
}.write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
use self::Compression::*;
Ok(match u8::read(read)? {
0 => Uncompressed,
1 => RLE,
2 => ZIP1,
3 => ZIP16,
4 => PIZ,
5 => PXR24,
6 => B44,
7 => B44A,
8 => DWAA(None),
9 => DWAB(None),
_ => return Err(Error::unsupported("unknown compression method")),
})
}
}
impl EnvironmentMap {
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize {
u8::BYTE_SIZE
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(self, write: &mut W) -> UnitResult {
use self::EnvironmentMap::*;
match self {
LatitudeLongitude => 0_u8,
Cube => 1_u8
}.write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
use self::EnvironmentMap::*;
Ok(match u8::read(read)? {
0 => LatitudeLongitude,
1 => Cube,
_ => return Err(Error::invalid("environment map attribute value")),
})
}
}
impl KeyCode {
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize {
6 * i32::BYTE_SIZE
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
self.film_manufacturer_code.write(write)?;
self.film_type.write(write)?;
self.film_roll_prefix.write(write)?;
self.count.write(write)?;
self.perforation_offset.write(write)?;
self.perforations_per_count.write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
Ok(KeyCode {
film_manufacturer_code: i32::read(read)?,
film_type: i32::read(read)?,
film_roll_prefix: i32::read(read)?,
count: i32::read(read)?,
perforation_offset: i32::read(read)?,
perforations_per_frame: i32::read(read)?,
perforations_per_count: i32::read(read)?,
})
}
}
impl LineOrder {
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize {
u8::BYTE_SIZE
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(self, write: &mut W) -> UnitResult {
use self::LineOrder::*;
match self {
Increasing => 0_u8,
Decreasing => 1_u8,
Unspecified => 2_u8,
}.write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
use self::LineOrder::*;
Ok(match u8::read(read)? {
0 => Increasing,
1 => Decreasing,
2 => Unspecified,
_ => return Err(Error::invalid("line order attribute value")),
})
}
}
impl Preview {
/// Number of bytes this would consume in an exr file.
pub fn byte_size(&self) -> usize {
2 * u32::BYTE_SIZE + self.pixel_data.len()
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
u32::write(self.size.width() as u32, write)?;
u32::write(self.size.height() as u32, write)?;
i8::write_slice(write, &self.pixel_data)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
let width = u32::read(read)? as usize;
let height = u32::read(read)? as usize;
if let Some(pixel_count) = width.checked_mul(height) {
// Multiply by the number of bytes per pixel.
if let Some(byte_count) = pixel_count.checked_mul(4) {
let pixel_data = i8::read_vec(
read,
byte_count,
1024 * 1024 * 4,
None,
"preview attribute pixel count",
)?;
let preview = Preview {
size: Vec2(width, height),
pixel_data,
};
return Ok(preview);
}
}
return Err(Error::invalid(
format!("Overflow while calculating preview image Attribute size \
(width: {}, height: {}).",
width,
height)));
}
/// Validate this instance.
pub fn validate(&self, strict: bool) -> UnitResult {
if strict && (self.size.area() * 4 != self.pixel_data.len()) {
return Err(Error::invalid("preview dimensions do not match content length"))
}
Ok(())
}
}
impl ::std::fmt::Debug for Preview {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
write!(f, "Preview ({}x{} px)", self.size.width(), self.size.height())
}
}
impl TileDescription {
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize {
2 * u32::BYTE_SIZE + 1 // size x,y + (level mode + rounding mode)
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
u32::write(self.tile_size.width() as u32, write)?;
u32::write(self.tile_size.height() as u32, write)?;
let level_mode = match self.level_mode {
LevelMode::Singular => 0_u8,
LevelMode::MipMap => 1_u8,
LevelMode::RipMap => 2_u8,
};
let rounding_mode = match self.rounding_mode {
RoundingMode::Down => 0_u8,
RoundingMode::Up => 1_u8,
};
let mode: u8 = level_mode + (rounding_mode * 16);
mode.write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
let x_size = u32::read(read)? as usize;
let y_size = u32::read(read)? as usize;
let mode = u8::read(read)?;
// wow you really saved that one byte here
// mode = level_mode + (rounding_mode * 16)
let level_mode = mode & 0b00001111; // wow that works
let rounding_mode = mode >> 4; // wow that works
let level_mode = match level_mode {
0 => LevelMode::Singular,
1 => LevelMode::MipMap,
2 => LevelMode::RipMap,
_ => return Err(Error::invalid("tile description level mode")),
};
let rounding_mode = match rounding_mode {
0 => RoundingMode::Down,
1 => RoundingMode::Up,
_ => return Err(Error::invalid("tile description rounding mode")),
};
Ok(TileDescription { tile_size: Vec2(x_size, y_size), level_mode, rounding_mode, })
}
/// Validate this instance.
pub fn validate(&self) -> UnitResult {
let max = i32::MAX as i64 / 2;
if self.tile_size.width() == 0 || self.tile_size.height() == 0
|| self.tile_size.width() as i64 >= max || self.tile_size.height() as i64 >= max
{
return Err(Error::invalid("tile size"))
}
Ok(())
}
}
/// Number of bytes this attribute would consume in an exr file.
// TODO instead of pre calculating byte size, write to a tmp buffer whose length is inspected before actually writing?
pub fn byte_size(name: &Text, value: &AttributeValue) -> usize {
name.null_terminated_byte_size()
+ value.kind_name().len() + sequence_end::byte_size()
+ i32::BYTE_SIZE // serialized byte size
+ value.byte_size()
}
/// Without validation, write this attribute to the byte stream.
pub fn write<W: Write>(name: &[u8], value: &AttributeValue, write: &mut W) -> UnitResult {
Text::write_null_terminated_bytes(name, write)?;
Text::write_null_terminated_bytes(value.kind_name(), write)?;
i32::write(value.byte_size() as i32, write)?;
value.write(write)
}
/// Read the attribute without validating. The result may be `Ok` even if this single attribute is invalid.
pub fn read(read: &mut PeekRead<impl Read>, max_size: usize) -> Result<(Text, Result<AttributeValue>)> {
let name = Text::read_null_terminated(read, max_size)?;
let kind = Text::read_null_terminated(read, max_size)?;
let size = i32_to_usize(i32::read(read)?, "attribute size")?;
let value = AttributeValue::read(read, kind, size)?;
Ok((name, value))
}
/// Validate this attribute.
pub fn validate(name: &Text, value: &AttributeValue, long_names: &mut bool, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult {
name.validate(true, Some(long_names))?; // only name text has length restriction
value.validate(allow_sampling, data_window, strict) // attribute value text length is never restricted
}
impl AttributeValue {
/// Number of bytes this would consume in an exr file.
pub fn byte_size(&self) -> usize {
use self::AttributeValue::*;
match *self {
IntegerBounds(_) => self::IntegerBounds::byte_size(),
FloatRect(_) => self::FloatRect::byte_size(),
I32(_) => i32::BYTE_SIZE,
F32(_) => f32::BYTE_SIZE,
F64(_) => f64::BYTE_SIZE,
Rational(_) => { i32::BYTE_SIZE + u32::BYTE_SIZE },
TimeCode(_) => self::TimeCode::BYTE_SIZE,
IntVec2(_) => { 2 * i32::BYTE_SIZE },
FloatVec2(_) => { 2 * f32::BYTE_SIZE },
IntVec3(_) => { 3 * i32::BYTE_SIZE },
FloatVec3(_) => { 3 * f32::BYTE_SIZE },
ChannelList(ref channels) => channels.byte_size(),
Chromaticities(_) => self::Chromaticities::byte_size(),
Compression(_) => self::Compression::byte_size(),
EnvironmentMap(_) => self::EnvironmentMap::byte_size(),
KeyCode(_) => self::KeyCode::byte_size(),
LineOrder(_) => self::LineOrder::byte_size(),
Matrix3x3(ref value) => value.len() * f32::BYTE_SIZE,
Matrix4x4(ref value) => value.len() * f32::BYTE_SIZE,
Preview(ref value) => value.byte_size(),
// attribute value texts never have limited size.
// also, don't serialize size, as it can be inferred from attribute size
Text(ref value) => value.bytes.len(),
TextVector(ref value) => value.iter().map(self::Text::i32_sized_byte_size).sum(),
TileDescription(_) => self::TileDescription::byte_size(),
Custom { ref bytes, .. } => bytes.len(),
BlockType(ref kind) => kind.byte_size()
}
}
/// The exr name string of the type that an attribute can have.
pub fn kind_name(&self) -> &[u8] {
use self::AttributeValue::*;
use self::type_names as ty;
match *self {
IntegerBounds(_) => ty::I32BOX2,
FloatRect(_) => ty::F32BOX2,
I32(_) => ty::I32,
F32(_) => ty::F32,
F64(_) => ty::F64,
Rational(_) => ty::RATIONAL,
TimeCode(_) => ty::TIME_CODE,
IntVec2(_) => ty::I32VEC2,
FloatVec2(_) => ty::F32VEC2,
IntVec3(_) => ty::I32VEC3,
FloatVec3(_) => ty::F32VEC3,
ChannelList(_) => ty::CHANNEL_LIST,
Chromaticities(_) => ty::CHROMATICITIES,
Compression(_) => ty::COMPRESSION,
EnvironmentMap(_) => ty::ENVIRONMENT_MAP,
KeyCode(_) => ty::KEY_CODE,
LineOrder(_) => ty::LINE_ORDER,
Matrix3x3(_) => ty::F32MATRIX3X3,
Matrix4x4(_) => ty::F32MATRIX4X4,
Preview(_) => ty::PREVIEW,
Text(_) => ty::TEXT,
TextVector(_) => ty::TEXT_VECTOR,
TileDescription(_) => ty::TILES,
Custom { ref kind, .. } => &kind.bytes,
BlockType(_) => super::BlockType::TYPE_NAME,
}
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
use self::AttributeValue::*;
match *self {
IntegerBounds(value) => value.write(write)?,
FloatRect(value) => value.write(write)?,
I32(value) => value.write(write)?,
F32(value) => value.write(write)?,
F64(value) => value.write(write)?,
Rational((a, b)) => { a.write(write)?; b.write(write)?; },
TimeCode(codes) => { codes.write(write)?; },
IntVec2(Vec2(x, y)) => { x.write(write)?; y.write(write)?; },
FloatVec2(Vec2(x, y)) => { x.write(write)?; y.write(write)?; },
IntVec3((x, y, z)) => { x.write(write)?; y.write(write)?; z.write(write)?; },
FloatVec3((x, y, z)) => { x.write(write)?; y.write(write)?; z.write(write)?; },
ChannelList(ref channels) => channels.write(write)?,
Chromaticities(ref value) => value.write(write)?,
Compression(value) => value.write(write)?,
EnvironmentMap(value) => value.write(write)?,
KeyCode(value) => value.write(write)?,
LineOrder(value) => value.write(write)?,
Matrix3x3(mut value) => f32::write_slice(write, &mut value)?,
Matrix4x4(mut value) => f32::write_slice(write, &mut value)?,
Preview(ref value) => { value.write(write)?; },
// attribute value texts never have limited size.
// also, don't serialize size, as it can be inferred from attribute size
Text(ref value) => u8::write_slice(write, value.bytes.as_slice())?,
TextVector(ref value) => self::Text::write_vec_of_i32_sized_texts(write, value)?,
TileDescription(ref value) => value.write(write)?,
Custom { ref bytes, .. } => u8::write_slice(write, &bytes)?, // write.write(&bytes).map(|_| ()),
BlockType(kind) => kind.write(write)?
};
Ok(())
}
/// Read the value without validating.
/// Returns `Ok(Ok(attribute))` for valid attributes.
/// Returns `Ok(Err(Error))` for invalid attributes from a valid byte source.
/// Returns `Err(Error)` for invalid byte sources, for example for invalid files.
pub fn read(read: &mut PeekRead<impl Read>, kind: Text, byte_size: usize) -> Result<Result<Self>> {
use self::AttributeValue::*;
use self::type_names as ty;
// always read bytes
let attribute_bytes = u8::read_vec(read, byte_size, 128, None, "attribute value size")?;
// TODO no allocation for small attributes // : SmallVec<[u8; 64]> = smallvec![0; byte_size];
let parse_attribute = move || {
let reader = &mut attribute_bytes.as_slice();
Ok(match kind.bytes.as_slice() {
ty::I32BOX2 => IntegerBounds(self::IntegerBounds::read(reader)?),
ty::F32BOX2 => FloatRect(self::FloatRect::read(reader)?),
ty::I32 => I32(i32::read(reader)?),
ty::F32 => F32(f32::read(reader)?),
ty::F64 => F64(f64::read(reader)?),
ty::RATIONAL => Rational({
let a = i32::read(reader)?;
let b = u32::read(reader)?;
(a, b)
}),
ty::TIME_CODE => TimeCode(self::TimeCode::read(reader)?),
ty::I32VEC2 => IntVec2({
let a = i32::read(reader)?;
let b = i32::read(reader)?;
Vec2(a, b)
}),
ty::F32VEC2 => FloatVec2({
let a = f32::read(reader)?;
let b = f32::read(reader)?;
Vec2(a, b)
}),
ty::I32VEC3 => IntVec3({
let a = i32::read(reader)?;
let b = i32::read(reader)?;
let c = i32::read(reader)?;
(a, b, c)
}),
ty::F32VEC3 => FloatVec3({
let a = f32::read(reader)?;
let b = f32::read(reader)?;
let c = f32::read(reader)?;
(a, b, c)
}),
ty::CHANNEL_LIST => ChannelList(self::ChannelList::read(&mut PeekRead::new(attribute_bytes.as_slice()))?),
ty::CHROMATICITIES => Chromaticities(self::Chromaticities::read(reader)?),
ty::COMPRESSION => Compression(self::Compression::read(reader)?),
ty::ENVIRONMENT_MAP => EnvironmentMap(self::EnvironmentMap::read(reader)?),
ty::KEY_CODE => KeyCode(self::KeyCode::read(reader)?),
ty::LINE_ORDER => LineOrder(self::LineOrder::read(reader)?),
ty::F32MATRIX3X3 => Matrix3x3({
let mut result = [0.0_f32; 9];
f32::read_slice(reader, &mut result)?;
result
}),
ty::F32MATRIX4X4 => Matrix4x4({
let mut result = [0.0_f32; 16];
f32::read_slice(reader, &mut result)?;
result
}),
ty::PREVIEW => Preview(self::Preview::read(reader)?),
ty::TEXT => Text(self::Text::read_sized(reader, byte_size)?),
// the number of strings can be inferred from the total attribute size
ty::TEXT_VECTOR => TextVector(self::Text::read_vec_of_i32_sized(
&mut PeekRead::new(attribute_bytes.as_slice()),
byte_size
)?),
ty::TILES => TileDescription(self::TileDescription::read(reader)?),
_ => Custom { kind: kind.clone(), bytes: attribute_bytes.clone() } // TODO no clone
})
};
Ok(parse_attribute())
}
/// Validate this instance.
pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult {
use self::AttributeValue::*;
match *self {
ChannelList(ref channels) => channels.validate(allow_sampling, data_window, strict)?,
TileDescription(ref value) => value.validate()?,
Preview(ref value) => value.validate(strict)?,
TimeCode(ref time_code) => time_code.validate(strict)?,
TextVector(ref vec) => if strict && vec.is_empty() {
return Err(Error::invalid("text vector may not be empty"))
},
_ => {}
};
Ok(())
}
/// Return `Ok(i32)` if this attribute is an i32.
pub fn to_i32(&self) -> Result<i32> {
match *self {
AttributeValue::I32(value) => Ok(value),
_ => Err(invalid_type())
}
}
/// Return `Ok(f32)` if this attribute is an f32.
pub fn to_f32(&self) -> Result<f32> {
match *self {
AttributeValue::F32(value) => Ok(value),
_ => Err(invalid_type())
}
}
/// Return `Ok(Text)` if this attribute is a text.
pub fn into_text(self) -> Result<Text> {
match self {
AttributeValue::Text(value) => Ok(value),
_ => Err(invalid_type())
}
}
/// Return `Ok(Text)` if this attribute is a text.
pub fn to_text(&self) -> Result<&Text> {
match self {
AttributeValue::Text(value) => Ok(value),
_ => Err(invalid_type())
}
}
/// Return `Ok(Chromaticities)` if this attribute is a chromaticities attribute.
pub fn to_chromaticities(&self) -> Result<Chromaticities> {
match *self {
AttributeValue::Chromaticities(value) => Ok(value),
_ => Err(invalid_type())
}
}
/// Return `Ok(TimeCode)` if this attribute is a time code.
pub fn to_time_code(&self) -> Result<TimeCode> {
match *self {
AttributeValue::TimeCode(value) => Ok(value),
_ => Err(invalid_type())
}
}
}
/// Contains string literals identifying the type of an attribute.
pub mod type_names {
macro_rules! define_attribute_type_names {
( $($name: ident : $value: expr),* ) => {
$(
/// The byte-string name of this attribute type as it appears in an exr file.
pub const $name: &'static [u8] = $value;
)*
};
}
define_attribute_type_names! {
I32BOX2: b"box2i",
F32BOX2: b"box2f",
I32: b"int",
F32: b"float",
F64: b"double",
RATIONAL: b"rational",
TIME_CODE: b"timecode",
I32VEC2: b"v2i",
F32VEC2: b"v2f",
I32VEC3: b"v3i",
F32VEC3: b"v3f",
CHANNEL_LIST: b"chlist",
CHROMATICITIES: b"chromaticities",
COMPRESSION: b"compression",
ENVIRONMENT_MAP:b"envmap",
KEY_CODE: b"keycode",
LINE_ORDER: b"lineOrder",
F32MATRIX3X3: b"m33f",
F32MATRIX4X4: b"m44f",
PREVIEW: b"preview",
TEXT: b"string",
TEXT_VECTOR: b"stringvector",
TILES: b"tiledesc"
}
}
#[cfg(test)]
mod test {
use super::*;
use ::std::io::Cursor;
use rand::{random, thread_rng, Rng};
#[test]
fn text_ord() {
for _ in 0..1024 {
let text1 = Text::from_bytes_unchecked((0..4).map(|_| rand::random::<u8>()).collect());
let text2 = Text::from_bytes_unchecked((0..4).map(|_| rand::random::<u8>()).collect());
assert_eq!(text1.to_string().cmp(&text2.to_string()), text1.cmp(&text2), "in text {:?} vs {:?}", text1, text2);
}
}
#[test]
fn rounding_up(){
let round_up = RoundingMode::Up;
assert_eq!(round_up.divide(10, 10), 1, "divide equal");
assert_eq!(round_up.divide(10, 2), 5, "divide even");
assert_eq!(round_up.divide(10, 5), 2, "divide even");
assert_eq!(round_up.divide(8, 5), 2, "round up");
assert_eq!(round_up.divide(10, 3), 4, "round up");
assert_eq!(round_up.divide(100, 50), 2, "divide even");
assert_eq!(round_up.divide(100, 49), 3, "round up");
}
#[test]
fn rounding_down(){
let round_down = RoundingMode::Down;
assert_eq!(round_down.divide(8, 5), 1, "round down");
assert_eq!(round_down.divide(10, 3), 3, "round down");
assert_eq!(round_down.divide(100, 50), 2, "divide even");
assert_eq!(round_down.divide(100, 49), 2, "round down");
assert_eq!(round_down.divide(100, 51), 1, "round down");
}
#[test]
fn tile_description_write_read_roundtrip(){
let tiles = [
TileDescription {
tile_size: Vec2(31, 7),
level_mode: LevelMode::MipMap,
rounding_mode: RoundingMode::Down,
},
TileDescription {
tile_size: Vec2(0, 0),
level_mode: LevelMode::Singular,
rounding_mode: RoundingMode::Up,
},
TileDescription {
tile_size: Vec2(4294967294, 4294967295),
level_mode: LevelMode::RipMap,
rounding_mode: RoundingMode::Down,
},
];
for tile in &tiles {
let mut bytes = Vec::new();
tile.write(&mut bytes).unwrap();
let new_tile = TileDescription::read(&mut Cursor::new(bytes)).unwrap();
assert_eq!(*tile, new_tile, "tile round trip");
}
}
#[test]
fn attribute_write_read_roundtrip_and_byte_size(){
let attributes = [
(
Text::from("greeting"),
AttributeValue::Text(Text::from("hello")),
),
(
Text::from("age"),
AttributeValue::I32(923),
),
(
Text::from("leg count"),
AttributeValue::F64(9.114939599234),
),
(
Text::from("rabbit area"),
AttributeValue::FloatRect(FloatRect {
min: Vec2(23.4234, 345.23),
max: Vec2(68623.0, 3.12425926538),
}),
),
(
Text::from("rabbit area int"),
AttributeValue::IntegerBounds(IntegerBounds {
position: Vec2(23, 345),
size: Vec2(68623, 3),
}),
),
(
Text::from("rabbit area int"),
AttributeValue::IntegerBounds(IntegerBounds {
position: Vec2(-(i32::MAX / 2 - 1), -(i32::MAX / 2 - 1)),
size: Vec2(i32::MAX as usize - 2, i32::MAX as usize - 2),
}),
),
(
Text::from("rabbit area int 2"),
AttributeValue::IntegerBounds(IntegerBounds {
position: Vec2(0, 0),
size: Vec2(i32::MAX as usize / 2 - 1, i32::MAX as usize / 2 - 1),
}),
),
(
Text::from("tests are difficult"),
AttributeValue::TextVector(vec![
Text::from("sdoifjpsdv"),
Text::from("sdoifjpsdvxxxx"),
Text::from("sdoifjasd"),
Text::from("sdoifj"),
Text::from("sdoifjddddddddasdasd"),
]),
),
(
Text::from("what should we eat tonight"),
AttributeValue::Preview(Preview {
size: Vec2(10, 30),
pixel_data: vec![31; 10 * 30 * 4],
}),
),
(
Text::from("leg count, again"),
AttributeValue::ChannelList(ChannelList::new(smallvec![
ChannelDescription {
name: Text::from("Green"),
sample_type: SampleType::F16,
quantize_linearly: false,
sampling: Vec2(1,2)
},
ChannelDescription {
name: Text::from("Red"),
sample_type: SampleType::F32,
quantize_linearly: true,
sampling: Vec2(1,2)
},
ChannelDescription {
name: Text::from("Purple"),
sample_type: SampleType::U32,
quantize_linearly: false,
sampling: Vec2(0,0)
}
],
)),
),
];
for (name, value) in &attributes {
let mut bytes = Vec::new();
super::write(name.as_slice(), value, &mut bytes).unwrap();
assert_eq!(super::byte_size(name, value), bytes.len(), "attribute.byte_size() for {:?}", (name, value));
let new_attribute = super::read(&mut PeekRead::new(Cursor::new(bytes)), 300).unwrap();
assert_eq!((name.clone(), value.clone()), (new_attribute.0, new_attribute.1.unwrap()), "attribute round trip");
}
{
let (name, value) = (
Text::from("asdkaspfokpaosdkfpaokswdpoakpsfokaposdkf"),
AttributeValue::I32(0),
);
let mut long_names = false;
super::validate(&name, &value, &mut long_names, false, IntegerBounds::zero(), false).unwrap();
assert!(long_names);
}
{
let (name, value) = (
Text::from("sdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfpo"),
AttributeValue::I32(0),
);
super::validate(&name, &value, &mut false, false, IntegerBounds::zero(), false).expect_err("name length check failed");
}
}
#[test]
fn time_code_pack(){
let mut rng = thread_rng();
let codes = std::iter::repeat_with(|| TimeCode {
hours: rng.gen_range(0 .. 24),
minutes: rng.gen_range(0 .. 60),
seconds: rng.gen_range(0 .. 60),
frame: rng.gen_range(0 .. 29),
drop_frame: random(),
color_frame: random(),
field_phase: random(),
binary_group_flags: [random(),random(),random()],
binary_groups: std::iter::repeat_with(|| rng.gen_range(0 .. 16)).take(8)
.collect::<SmallVec<[u8;8]>>().into_inner().unwrap()
});
for code in codes.take(500) {
code.validate(true).expect("invalid timecode test input");
{ // through tv60 packing, roundtrip
let packed_tv60 = code.pack_time_as_tv60_u32().expect("invalid timecode test input");
let packed_user = code.pack_user_data_as_u32();
assert_eq!(TimeCode::from_tv60_time(packed_tv60, packed_user), code);
}
{ // through bytes, roundtrip
let mut bytes = Vec::<u8>::new();
code.write(&mut bytes).unwrap();
let decoded = TimeCode::read(&mut bytes.as_slice()).unwrap();
assert_eq!(code, decoded);
}
{
let tv50_code = TimeCode {
drop_frame: false, // apparently, tv50 does not support drop frame, so do not use this value
.. code
};
let packed_tv50 = code.pack_time_as_tv50_u32().expect("invalid timecode test input");
let packed_user = code.pack_user_data_as_u32();
assert_eq!(TimeCode::from_tv50_time(packed_tv50, packed_user), tv50_code);
}
{
let film24_code = TimeCode {
// apparently, film24 does not support some flags, so do not use those values
color_frame: false,
drop_frame: false,
.. code
};
let packed_film24 = code.pack_time_as_film24_u32().expect("invalid timecode test input");
let packed_user = code.pack_user_data_as_u32();
assert_eq!(TimeCode::from_film24_time(packed_film24, packed_user), film24_code);
}
}
}
}
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists